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Abstract - Data has achieved a size beyond which predictive analysis has become costlier and more 

complex. Despite this dead end, we still continue spending billions of dollars amassing cosmic 

volumes of data without planning any feasible approaches to gain the long awaited business value 

for which we trusted data to lead to. That said, we know that unless we manage to dig deep in these 

data to understand our decision parameters, we will still lack the predictive power needed to make a 

sound decision. In order to plan our decision, we first needed to construct probability distributions 

for all relevant decision parameters and prepare to apply available decision theoretic methods. 

Without the sought probabilistic decision support, there will be no sound method to act. 

We propose a predictive analytic model, using Smet’s Transferred Belief Model to construct 

probability distributions for all our decision parameters based on sufficient representative subsets of 

data throughout the big data depots. Once this probabilistic framework is in place, available decision 

theory models can be applied. 

A fictitious numeric example is processed to demonstrate the working of our predictive analytic 

model. 

Keywords - Predictive analytics, Transferred Belief Model, Dempster and Shafer theory, big data, 

probability distributions. 

 

Introduction 

The literature started discussing big data at a fast pace. Unfortunately most of the reported 
studies dealt with proposing data analytic models that are more appropriate for traditional 
statistics and data mining. [1, 4, 5]  Some other studies focused on storage management 
which is an important topic in the big data field. So we are still in need for tools to manage 
business value based on data that is at risk to grow so large that they may become 
impossible to work with using available traditional data analytic approaches. [4, 5] 
 
Big data sizes have reached the petabytes in one data depot and the entire big data stores 
have become just too creepy to even start exploring them. We just cannot any longer know 
how we can feasibly continue the collection, the storage, the search, and the planning of 
any gain of business value. [4, 5] We certainly see great  analytics tools proposed to process 
large data samples and they may reveal great business benefits, but these techniques are 
still very local and do not take advantage of the properties of big data, especially when its 
volumes expand, its velocity increase, and it variability become overwhelming. [1, 4] 
 
We are still attempting to seek sound methodologies capable to analyze larger and more 
complex data sets with the ability to efficiently manage real time and live data streams.  We 
are still in need for big data management platforms, new data architectures that ease the 
development and the adoption of powerful analytical methods and tools. Any big data 
analytic approaches should take into account of the main big data properties, including its 
first three V’s: volume, variety, and velocity. The volume property addresses the massive scale and 
growth of unstructured data beyond traditional storage and analytical solutions. The variety 
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property addresses the traditional data management processes beyond the heterogeneity of the 
data. [1, 11] The velocity property addresses the speed of production of data, especially for real-time 

data, with the objective of immediate business advantage. [3] The literature also advanced other 
studies on big data that proposed other V’s [1, 11] related to data inconsistency, 
incompleteness, ambiguity, latency, deception, and many other data quality properties. [1, 
11] 
 

In this  paper intends to extend the literature to propose an analytical approach to construct 

probability distributions for decision parameters relevant to a decision problem using available big 

data resources. Sound decision theoretic techniques cannot be carried out if the needed probability 

distributions on decision parameters cannot be obtained. [2] Decision theory is needed to study 

decision problems and to fit them into a framework where the decision maker can have all the 

techniques to manage all types of uncertainties before a decision is made. [2] The relevant decision 

parameters have to be studied based on their probability distributions and the expected outcomes 

of available alternative decision actions.  The decision maker needs to understand the actions 

consequences when taken by using utility theory in valuing all types of outcomes.  Bayesian decision 

theory offers a statistical platform that provides the techniques to quantify the tradeoffs between 

various outcomes, based on probabilities and on expected values of costs. That said, nothing of this 

can be achieved if those probability distributions on the decision parameters cannot be produced 

despite all the data accumulated in costly ways.  

 

Probabilistic model based on TBM 

We intend to develop an analytical model to examine sufficient data in a big data depot on decision 

parameters that are relevant to a given decision problem for the purpose of producing the decision 

support information needed to take action. For this purpose, we consider a big data depot with 

known structure that is feasibly made available to our data analytics team.  That is, let us assume 

that we now have on hand an extracted smaller big data depot Ѳ with a known structure, say, 

{{aij}i=1,M; j=1,N}, M,N: sufficiently large} where  aij is a (simple) data values in A1 x … x AN. Also let 

<qi1+1, …, qiK+M1> a sequence of K integers between 1 and M-M1 such that |qk-qk-1|>M1 for 1<k<K that 

serve as pointers needed to navigate the big data to selected our data subsets Dj, j=1,N that we 

process using the TBM model to produce probability distributions. 

Construction of belief structures on selected data subsets 

Given a data subset Dqk, for every k, 1≤k≤K, we can construct a belief structure by considering the 

frame of discernment Ω=∏i=1,N 2Ai  as the Cartesian product of all power sets of data attributes on the 

selected data subset. Because the big data is structured, this frame of discernment is the same foe 

all data sets.  We propose the following steps as in Wang [12] that can be followed for the 

construction of belief structures of the selected data subsets: 

Step 1:  Define the generic hyper power set of selected hyper attributes from the 

  selected big data sub-depot 

 

Step 2:  For every subset g  in Ω, compute sDqk(g)= ∑e in g |{d in Dqk such that e in d}|, 

  the support of g in the data subset Dqk , for every k, 1≤k≤K.  

 

Step 3:  Compute the belief structure: 
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   mDqk: 2∏i=1,N1 Ai m→[0 1] 

   mDqk(e) = sDqk({e})/ sDqk(G) 

   mDqk(Ω) = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fusing belief structures 

We have K sources of evidence which are the hyper data subsets {Dqk}k=1,K that tell us about the 

behaviors of all focal hypertuples in the feasible space Ω. Before we can compute the basic belief 

assignment values associated with hypertuples in Ω we need to fuse all available pieces of evidence 

obtained from these sources. At this point, Depmster’s Rule comes handy to apply to the K belief 

structures {mDqk}k=1,K for the production of the combined evidence mD where D is the set of hyper data 

subsets {Dqk}k=1,K.  

Dempster's rule of combination is a rule for combining belief functions when these belief 

functions are based on independent sources of evidence. [9, 10] 

Specifically, the combination is calculated from the two sets of masses m1 and m2 as follows: 

m12(ᴓ)=0 
m12(A)=  [m1(+)m2](A) = 1/(1-k) ∑B∩C=A≠ᴓ m1(B)m2(C), where : 
k= ∑B∩C= ᴓ m1(B)m2(C) is a measure of the amount of conflict between the two bba’s. 

Index 
i=1,M 

Selected big data subsets for TBM processing 

i=qi1  

  A1  Aj  AN1 

tqi1+1 aqi1+1,1  aqi1+1,j  aqi1+1,N1 

- - - - - - - - - - - - - - - - - - - - - - - - 

tqi1+k aqi1+k,1  aqi1+k,j  aqi1+k,N1 

- - - - - - - - - - - - - - - - - - - - - - - - 

tqi1+M1 aqi1+M1,1  aqi1+M1,j  aqi1+M1,N1 
 

- - - - - - - - - - - - - - - 

i=qik  

  A1  Aj  AN1 

tqik+1 aqik+1,1  aqik+1,j  aqik+1,N1 

- - - - - - - - - - - - - - - - - - - - - - - - 

tqik+k aqik+k,1  aqik+k,j  aqik+k,N1 

- - - - - - - - - - - - - - - - - - - - - - - - 

tqik+M1 aqik+M1,1  aqik+M1,j  aqik+M1,N1 
 

- - - - - - - - - - - - - - - 

i=qiK  

  A1  Aj  AN1 

tqiK+1 a qiK+1,1  aqiK+1,j  aqiK+1,N1 

- - - - - - - - - - - - - - - - - - - - - - - - 

tqiK+k a qiK+k,1  aqiK+k,j  aqiK+k,N1 

- - - - - - - - - - - - - - - - - - - - - - - - 

tqiK+M1 a qiK+M1,1  aqiK+M1,j  aqiK+M1,N1 
 

- - - - - - - - - - - - - - - 
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After applying Dempster’s rule, we obtain the fused belief structure mD as follows [12]: 

mD(ᴓ)=0 

mD(e)=  [mDq1 [+] … [+] mDqK](e) = 1/(1-k) ∑∩k=1,K (xk)=e  ∏k=1,K mDqk(xk), where : 

k = ∑∩k=1,K (xk)=ᴓ  ∏k=1,K mDqk(xk) is a measure of the amount of conflict between the K bba’s. 

In order to avoid the computations to produce the fused belief structure using Dempster’s 

Rule can be very complex sometimes, including in this case, we are using some easier 

equations proposed by in Wang et al. (2007) as follows [12]: 

   mD(e)=  [mDq1 [+] … [+] mDqK](e) =  ∑k=1,K mDqk(e).sDqk(Ω) / ∑k=1,K sDqk(Ω)  

 

 

 

 

 

 

 

 

 

 

 

 

 

At this point, we have succeeded in constructing a belief structure for each of the K subsets we 

arbitrarily selected from the structured big data depot. We also showed how to fuse the belief 

structures using Dempster rule, and showed how to compute the basic belief assignment value 

(mass value) for every focal element in the feasible space G based on the hyper data subsets. We 

now then have accumulated all available evidence about the behaviors of all focal elements in the 

hyper data subset D. We now started to have an idea about the behavior of our decision parameters 

but not to the point where we can make a mathematically sound decision. In order to do so, we 

need to manage all the uncertainty associated with our decision domain G; and for this, we need to 

come up with a way to construct probability distributions, if possible, for all relevant decisions 

parameters in the feasible space. For this purpose, we propose applying Smets’ Transfer Belief 

Model (TBM). [8] This model is capable to produce approximative probability distributions for all our 

decision parameters, called the pignistic probabilities. Once we have them, we can then apply 

decision theory to act in a mathematically sound manner.  

Smets’ Transfer Belief Model 

Let us have a brief introduction of the Smets' Transferred Belief Model (TBM) [8].  The TBM consists 

of  two steps: the credal model step and the pinistic model step. The reader may alternatively opt 
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for Shafer's plausibility functions as a substitute to Smets' pignistic probabilities, as both techniques 

stem from the same belief structure and both add greater interpretability to the TBM. [6, 7, 8]. 

The design of the creedal step may be set to fully asserted evidence based on the selected subsets   

without accounting for any managerial judgment that may be sometimes relevant in some decision 

problems and without accounting for any certainty factors or discount factors associated with the 

evidence on hand. This means that the basic belief assignments expressing the uncertainty 

associated with the hyper data subsets’ evidence remain fully asserted. The overall evidence on 

hand on our decision parameters has been accepted and expressed as a single belief structure as 

given above: 

 

mD(ᴓ)=0 

mD(e)=  [mDq1 [+] … [+] mDqK](e) = 1/(1-k) ∑∩k=1,K (xk)=e  ∏k=1,K mDqk(xk), where : 

k = ∑∩k=1,K (xk)=ᴓ  ∏k=1,K mDqk(xk) is a measure of the amount of conflict between the K bba’s. 

As mentioned earlier, even though we here demonstrate the pignistic model, another way may 

alternatively choose to compute Shafer's plausibility functions as a substitute to the pignistic 

probabilities. Smets' pignistic probabilities may be induced from the above belief structure as 

follows:  

  For any e in Ω: 

  PBet(e) =  ∑e≤x mD(x).|x∩e|/|x|. 

Numerical Example 

The initial size of the power set of A1xA2xA3 is 2|A1|.2|A2|.2|A3| which is 8x8x4 = 256 any hypertuples. 

Let us assume that we are only concerned with the attributes A1 and A2, and we are hence only 

processing 2|A1|.2|A2|=8x8=64 hypertuples.   

For demonstration purposes, we will select K=3 simple data subsets of a fixed size equal to M1=5. 

The pointers are arbitrarily set at q1=8, q2=34, and q3=53. 

In order to apply common decision theory methods, we need to know the probability distributions 

of the two attributes A1 and A2 or at least the probability of their Cartesian product A1xA2.  

In this example, the elements of A1xA2 for which we need probability distributions are only 

|A1|x|A2| = 3x3=9 elements which are {(1, a), (1,b), (1, c), (2, a), (2,b), (2, c), (3, a), (3,b), (3, c)}. 

The pignistic probability for an element a = (a1, a2) in A1xA2 is given as follows: 

   PBet (a) = ∑aԐx≤A1xA2 m(x)/|x| 

   For example, PBet ((2,c)) = m(({1, 2}, {c}))/|({1, 2}, {c})| + m(({2, 3}, {c}))/|({2, 3}, {c})| +  

    m(({1, 2, 3}, {c}))/|({1, 2, 3}, {c})| +  

    m(({1, 2}, {a, c}))/|({1, 2}, {a, c})| + m(({2, 3}, {a, c}))/|({2, 3}, {a, c})| +  

    m(({1, 2, 3}, {a, c}))/|({1, 2, 3}, {a, c})| +  

    m(({1, 2}, {b, c}))/|({1, 2}, {b, c})| + m(({2, 3}, {b, c}))/|({2, 3}, {b, c})| +  

    m(({1, 2, 3}, {b, c}))/|({1, 2, 3}, {b, c})| +  

     m(({1, 2}, {a, b, c}))/|({1, 2}, {a, b, c})| + m(({2, 3}, {a, b, c}))/|({2, 3}, {a, b, c})| 

       + m(({1, 2, 3}, {a, b, c}))/|({1, 2, 3}, {a, b, c})| 
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At this point we succeeded to construct the probability distribution of our decision parameters 

consisting of the Cartesian product of A1 and A2.  Once this probability distribution is obtained we 

can then also compute the variance and standard deviation on the decision parameters and we can 

compute the expected values of the parameters and any other quantities on interest to the decision 

making process. Without the probability distributions of the decision parameters there will be no 

sound mechanism to apply available decision theoretic approaches. 

Managerial implications 

Decision theory is the study of decision problems and preparing them in a framework where one has 

all the techniques to manage all types of uncertainties before a decision is made. All relevant 

decision parameters have to be studied based on their probability distributions and decision 

outcomes.  An example of the methods one needs to understand the consequences is the use of 

utility theory in valuing all types of outcomes.  Bayesian decision theory is a statistical platform that 

provides the techniques to quantify the tradeoff between various outcomes, based of probabilities 

and expected values of costs. That said, nothing of the above can be accomplished if those 

probability distributions on the decision parameters cannot be produced despite all the abundances 

of data we accumulated in costly ways.  

It is then about time that managers redeem the benefits they long awaited from accumulated data. 

The traditional statistical methodologies, including data mining, will not work, given the size of data, 

its variety, and its velocity. The predictive analytic model we proposed is useful for those managers 

who have the data but cannot generate the business value needed to redefine marketing strategies, 

increase sales of services and goods, manage rivalry, and achieve a lasting business continuity. 

We provided a simple numerical example to demonstrate how our proposed model works. The size 

of the data sets can be adjusted to your company needs and also the number of the data subsets 

and their dispersion in the big data depots to achieve maximum representativeness. The use of a 

random generator to set the pointers where data subsets can be started will also improve the 

representativeness of the data subsets. The predictive analytic process can also set to be iterative to 

achieve convergence. This convergence can be achieved by imposing a stopping criterion where the 

iterative process stops as soon as we notice stable probability distributions for the decision 

parameters, i.e., no significance change in the probability distributions have been observed in the 

last batch of iterations. 

 

 

Relevant element Masse Cardinal Mass/Cardinal 

mD(({1, 2}, {c})) 0.0129 3 0.0043 

mD (({2, 3}, {c})) 0.0172 3 0.005733 

mD (({1, 2, 3}, {c})) 0.0214 4 0.00535 

mD (({1, 2}, {a, c})) 0.0172 4 0.0043 

mD (({2, 3}, {a, c})) 0.0215 4 0.005375 

mD (({1, 2, 3}, {a, c})) 0.0344 5 0.00688 

mD (({1, 2}, {b, c})) 0.0301 4 0.007525 

mD (({2, 3}, {b, c})) 0.0343 4 0.008575 

mD (({1, 2, 3}, {b, c})) 0.0515 5 0.0103 

mD (({1, 2}, {a, b, c})) 0.0386 5 0.00772 

mD (({2, 3}, {a, b, c})) 0.0429 5 0.00858 

mD (({1, 2, 3}, {a, b, c})) 0.0644 6 0.010733 

Total 0.085372 
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Frame 2A1xA2:  SD1(G)=79, SD2(G)=79, SD3(G)=75 –Continued- 

Index A1 A2 SD1(e) SD2(e) SD3(e) mD1(e) mD2(e) mD3(e) mD1,D2,D3(e) 

25 {1, 2} {a, b} 3 1 3 0.0380 0.0127 0.0400 0.0301 

26 {1, 3} {a, b} 2 3 2 0.0253 0.0380 0.0267 0.0301 

27 {2, 3} {a, b} 1 2 3 0.0127 0.0253 0.0400 0.0258 

28 {1, 2, 3} {a, b} 3 3 4 0.0380 0.0380 0.0533 0.0429 

29 {1} {a, c} 2 0 0 0.0253 0.0000 0.0000 0.0086 

30 {2} {a, c} 1 1 0 0.0127 0.0127 0.0000 0.0086 

31 {3} {a, c} 0 2 1 0.0000 0.0253 0.0133 0.0129 

32 {1, 2} {a, c} 3 1 0 0.0380 0.0127 0.0000 0.0172 

33 {1, 3} {a, c} 2 1 1 0.0253 0.0127 0.0133 0.0172 

34 {2, 3} {a, c} 1 3 1 0.0127 0.0380 0.0133 0.0215 

35 {1, 2, 3} {a, c} 3 3 2 0.0380 0.0380 0.0267 0.0344 

36 {1} [b, c} 2 1 1 0.0253 0.0127 0.0133 0.0172 

37 {2} [b, c} 2 1 1 0.0253 0.0127 0.0133 0.0172 

38 {3} [b, c} 0 2 2 0.0000 0.0253 0.0267 0.0172 

39 {1, 2} [b, c} 3 2 2 0.0380 0.0253 0.0267 0.0301 

40 {1, 3} [b, c} 2 3 3 0.0253 0.0380 0.0400 0.0343 

41 {2, 3} [b, c} 2 3 3 0.0253 0.0380 0.0400 0.0343 

42 {1, 2, 3} [b, c} 4 4 4 0.0506 0.0506 0.0533 0.0515 

43 {1} {a, b, c} 3 1 1 0.0380 0.0127 0.0133 0.0215 

44 {2} {a, b, c} 2 1 2 0.0253 0.0127 0.0267 0.0215 

45 {3} {a, b, c} 0 3 2 0.0000 0.0380 0.0267 0.0215 

46 {1, 2} {a, b, c} 5 2 2 0.0633 0.0253 0.0267 0.0386 

47 {1, 3} {a, b, c} 3 4 3 0.0380 0.0506 0.0400 0.0429 

48 {2, 3} {a, b, c} 2 4 4 0.0253 0.0506 0.0533 0.0429 

49 {1, 2, 3} {a, b, c} 5 5 5 0.0633 0.0633 0.0667 0.0644 

 

Frame 2A1xA2:  SD1(G)=79, SD2(G)=79, SD3(G)=75 

Index A1 A2 SD1(e) SD2(e) SD3(e) mD1(e) mD2(e) mD3(e) mD1,D2,D3(e) 

1 {1} {a} 0 0 0 0.0127 0.0000 0.0000 0.0043 

2 {2} {a} 0 0 0 0.0000 0.0000 0.0000 0.0000 

3 {3} {a} 0 1 0 0.0000 0.0127 0.0000 0.0043 

4 {1, 2} {a} 1 0 1 0.0127 0.0000 0.0133 0.0086 

5 {1, 3} {a} 0 1 0 0.0127 0.0127 0.0000 0.0086 

6 {2, 3} {a} 1 1 1 0.0000 0.0127 0.0133 0.0086 

7 {1, 2, 3} {a} 1 1 1 0.0127 0.0127 0.0133 0.0129 

8 {1} {b} 1 1 1 0.0127 0.0127 0.0133 0.0129 

9 {2} {b} 1 0 1 0.0127 0.0000 0.0133 0.0086 

10 {3} {b} 1 1 1 0.0000 0.0127 0.0133 0.0086 

11 {1, 2} {b} 2 1 2 0.0253 0.0127 0.0267 0.0215 

12 {1, 3} {b} 2 2 2 0.0127 0.0253 0.0267 0.0215 

13 {2, 3} {b} 2 1 2 0.0127 0.0127 0.0267 0.0172 

14 {1, 2, 3} {b} 3 2 3 0.0253 0.0253 0.0400 0.0300 

15 {1} {c} 0 0 0 0.0127 0.0000 0.0000 0.0043 

16 {2} {c} 0 1 0 0.0127 0.0127 0.0000 0.0086 

17 {3} {c} 1 1 1 0.0000 0.0127 0.0133 0.0086 

18 {1, 2} {c} 0 1 0 0.0253 0.0127 0.0000 0.0129 

19 {1, 3} {c} 1 1 1 0.0127 0.0127 0.0133 0.0129 

20 {2, 3} {c} 1 2 1 0.0127 0.0253 0.0133 0.0172 

21 {1, 2, 3} {c} 1 2 1 0.0253 0.0253 0.0133 0.0214 

22 {1} {a, b} 1 1 1 0.0253 0.0127 0.0133 0.0172 

23 {2} {a, b} 2 0 2 0.0127 0.0000 0.0267 0.0129 

24 {3} {a, b} 1 2 1 0.0000 0.0253 0.0133 0.0129 
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Conclusion  

We discussed the costly effort we make in amassing data. This effort has not been matched with an 

equal effort of analyzing the data and build the predictive power needed for our decision processes.  

Bayesian decision theory provides great techniques to quantify the tradeoff between various 

outcomes, based of probabilities and expected values of costs. Unfortunately, none of these benefits 

can be accomplished if those probability distributions on the decision parameters cannot be 

produced despite all the abundances of data we accumulated in costly ways. 

We proposed a predictive analytic model, using Smet’s Transferred Belief Model to construct 

probability distributions for all our decision parameters based on sufficient representative subsets of 

data throughout the big data depots. Once this probabilistic framework is in place, available decision 

theory models can be applied. 

 We provided a simple numerical example to demonstrate how our proposed model works. The size 

of the data sets can be adjusted to satisfy company needs and also the number of the data subsets 

and their dispersion in the big data depots to achieve maximum representativeness. This model can 

be expanded, in a future research project, by employing a random generator to set the pointers 

where data subsets can be started. The predictive analytic process can also be set to be iterative to 

achieve convergence. This convergence can be achieved by imposing a stopping criterion where the 

iterative process stops as soon as we obtain stable probability distributions for the decision 

parameters (i.e., no significance change in the probability distributions have been observed in the 

last batch of iterations). 
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